读书阁 > 玄幻魔法 > 重生之AI教父 > 162. 网络的重参数化

162. 网络的重参数化(3 / 3)

终变为我们所想要的y。

可在残差办法当中,y=F(x)+x,x这个原始的输入,是不能够舍弃的。

必须有空间一直被占用着,用来存放这个x,因为它还等着最后加上去呢。

在比较复杂,分辨率比较高的任务当中,这个变量的大小是相当可观的。

这种情况有没有办法可以规避?规避之后,残差方法带来的性能提升能不能不要被影响?

答案当然是肯定的,完全可以做到。

孟繁岐准备实现的这种结构重参数化,其最核心的思想就是模型训练和实际使用推理的分离。

首先构造一系列结构(一般用于训练),并将其参数等价转换为另一组参数(一般用于推理),从而将这一系列结构等价转换为另一系列结构。

在现实场景中,训练资源一般是非常丰富的,可以在大型的服务器上得到。

而推理的时候,计算资源往往会比较有限,因此大家更在意的是推理时的开销和性能。

想要训练时的结构较大,具备好的某种性质,比如性能特别好,准确率特别高。

但在推理的时候,则把结构变小变快,同时在数学上等价于大型的结构。

孟繁岐的这个新办法,就提供了这种可能,他相信,重参数+移动端网络的算力削减,将会成为自动驾驶领域的一大催化剂。最新网址:

本站网站:

最新小说: 枭爷霸宠萌宝妻 温秘书追夫图谋不轨 一念入凡 长姐她人狠话不多 掌中爱人 团宠千金爱装乖 案发现场捉拿傲娇老公 小人物大情怀 夫人她致命又危险 快递小哥:我获得瞬移技能